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LETTER TO THE EDITOR 

Confluent singularities in directed bond percolation 

Joan Adler, M Moshe and V Privman 
Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel 

Received 17 June 1981 

Abstract. Existing series for directed bond percolation on the square, honeycomb and face 
centred cubic lattices are analysed with a view to detecting their confluent singularities. We 
compare our results with the confluent singularities in Reggeon field theory, which has been 
shown to be in the same universality class. 

In recent months there has been a growing interest in the problem of directed bond 
percolation (DBP), which differs from the usual percolation in that passage across a given 
bond (allowed with probability p )  is permitted only in one direction. DBP was first 
introduced by Broadbent and Hammersley (1957) and has potential applications to 
hopping transport in an electric field (Adler and Silver 1981), and galactic evolution 
(Schulman and Seiden 1980). 

It has recently been shown (Cardy and Sugar 1980) that DBP is in the same 
universality class as Reggeon field theory (RFT), an effective field theory of high-energy 
physics (Migdal etal 1974a, b, Abarbanel and Bronzan 1974a, b, Abarbanel etal 1975, 
Moshe 1977). The classification of this theory in a class of models in chemistry and 
biology was also discussed by Grassberger and Sundermeyer (1978) and Grassberger 
and de la Torre (1979). The RFT of space dimension D (plus one ‘time’ dimension) is 
related to DBP on a d = D + 1 dimensional acyclic directed lattice (see Blease (1977a) 
for DBP model details), and the direction of increasing ‘time’ in RFT corresponds to the 
special space or ‘propagating’ direction of the acyclic lattice. 

The upper critical dimension for both models is dc  = 5 (Obukov 1980), and the 
exponents of the leading singularities in the percolation probability, P ( p ) ,  and mean 
cluster size, S ( p ) ,  of DBP (p  and y, respectively), as well as the exponents vl and VIJ of the 
correlation length in the transverse and longitudinal directions (Domany and Kinzel 
1981), are related to RFT exponents U, z and T by the expressions (Cardy and Sugar 
1980) 

p = + V ( $ D Z  - T ) ,  (1) 

Y = v ( l +  771, (2) 

(3) VI1 = v, 

In RFT, the ‘probability of percolation’ from a point (0,O) to a point (x, t )  ( t  = In s, where 
s is the square of the centre of mass energy, and x is the D-dimensional impact 
parameter) is described by the two-point Green function 

1 = vll/e = ~ V Z .  
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Here (Dl is the scaling function of the dominant singularity, the mass term A-  ( p , - p ) "  
is the inverse of the correlation length in the t direction, p c  plays the role of the critical 
percolation probability, and the scaling function (D2 and the exponent A describe the 
confluent corrections. The scaling functions take different forms, depending on 
whether p < p c  (a < ac, T > T, in RFT terminology) or p > pc .  In the former case we can 
write the mean cluster size (the 'susceptibility' of a percolation model) as 

and P ( p )  is the 'magnetisation' of a percolation model. From these identifications 
Cardy and Sugar (1980) found the relations of equations ( l ) ,  (2) and (3), and we may 
further deduce that AI = WY, the confluent exponent of the percolation process (see 
Aharony 1980), corresponds to AV in RFT (W = A is the derivative of the beta function at 
the fixed point). 

To the best of our knowledge, no attempt has yet been made to calculate A1 for DBP. 
In RFT, the exponents and scaling functions are related to measurable scattering cross 
sections (see the recent analysis in Baume1 eta1 1981); for example, the hadron-hadron 
total cross section m ( s )  behaves at high energies (s +CO) as 

Since high-energy experiments are performed at large but finite energies s, one is 
interested in the non-leading terms in C T ~ ( S )  as well as in its asymptotic behaviour. 
Indeed, the approach to scaling as s + CO which is governed by the exponent A has been 
calculated in RFT at both D = 1 and D = 2 (Frazer and Moshe 1975a, b, Cardy 1977a, b, 
Brower et a1 1978). 

There is, in general, excellent agreement between DBP and RFT for the values of the 
critical exponents of the dominant singularities, and it would be of interest to ascertain 
whether this correspondence can be extended to the confluent corrections. The series 
of Blease (1977a, b, c) are suitable for this objective, and since analysis for confluent 
corrections requires initial series of substantial length, we have concentrated our efforts 
for d = 2 on his (1977~)  pair connectedness series for the square and honeycomb lattices 
(since these are the longest available series). The moments p n ( p )  of the pair connec- 
tedness have the critical behaviour 

and for the square lattice we consider series for n = 0,2,4, whereas for the honeycomb 
only the series for n = 0 has been obtained. For d = 3 we study his P(q)  series (q = 1 - p )  
for the FCC lattice (Blease 1977a). The correction exponent should be the same in the 
,series for P ( p ) ,  S ( p )  and ~ " ( p )  in DBP and (as mentioned above) equal to A V  of RFT. 
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We utilised three different Pad6-type techniques, the following method giving the 
most stable results. We assume behaviour of the form 

fi(p) =A(p)(pc-p)'[l +.(pc-~)~ '+.  .I 
=Ai(pc-p)'[l + B ( P , - ~ ) ~ ' + A ~ ( ~ C - P ) + .  . . I (4) 

where the A2 and higher-order terms arise from the Taylor expansion of A ( p ) ,  and 
construct the series for 

f 2 ( ~ )  = gfi(P) + (pc-p)dfi(p)/dp 

f 3 ( P )  = (g  + l)f2(P) + (Pc-P) dfZ(P)/dP. 

( 5 )  

(6)  

and 

The logarithmic derivatives of fl, f2  and f 3  should have a pole at p ,  with residues g, 
g + min{Al, 1) and g + min{Al, 2}, respectively, and we searched for this pole both by 
forming Pad6 approximants to the logarithmic derivative of fi, (lgfi)', i = 1 ,2 ,3 ,  and by 
evaluating the values of the Pad6 approximants to ( p  -pc)(lgfi)' at p = p ,  for i = 2,3.  

In order to calculate fz and f 3 ,  we require input values of pc and of g, the exponent of 
the dominant singularity. We re-analysed several series from Blease (1977a, c) and 
obtained good agreement with all his values, with the exception of the d = 5 hypercubic 
S ( p )  series, where we found p,=0.2085i0.0002 and y = 1.119i0.005. This value 
compares favourably with the RFT result of y = 1 from the E expansion (Baker 1974, 
Bronzan and Dash 1974a, b, c); the discrepancy is probably due to a combination of the 
logarithmic corrections at d, and the shortness of the S ( p )  series. 

In the light of Blease's (1977a) discussion on the scaling relations, it is of interest to 
note that hyperscaling is built into the scaling functions of RFT. The hyperscaling 
relation y + 2p  = dv, which in DBP becomes (Kinzel and Yeomans 1981a, b) y + 2 0  = 
(D + e)vl, is an exact relation in RFT, as can be seen from equations (1)-(3). In DBP it is 
satisfied by the values obtained by Blease (1977a, b, c) within their error limits. 

Our results for the two-dimensional lattices are presented in table 1 with RFT 
exponents included for purposes of comparison. The values for A1 all agree (within 
their error limits) with the hv value of RFT (Brower et a1 1978, Cardy 1977a, b). 
However, since Al is very close to 1.00, we are unable to determine conclusively 
whether we are observing the term with coefficient A2 or B (equation (4)). This was also 
the case in the high-temperature series calculation in RFT (Brower et a1 1978). 

Table 1. 

A ~ = w v  
Lattice Series (Our analysis) P,t 

Square /.LO( p )  1.02 h0.02 0.6446 f 0.0002 
Square / . L ~ ( P )  1.02f0.02 0.6446*0.0002 
Square pq( p )  1.15 * 0.15 0.6446f0.0002 
Honeycomb p 0 ( p )  1.025 f 0.025 0.8226f 0.0020 

RFTS (D= 1) x ( T )  1.04*0.02 ( A V )  Tc=0.60628* 
0.00004 

Leading exponentt 

y=2.271*0.016 
y+2v=5.730*0.030 
y+4v =9.195*0.044 
y =2.250*0.021 

y = 2.286*0.020 

v = 1.736*0.001 

t pc ,  y, v values for DBP are those of Blease (1977a, b, c) and are confirmed by our analysis. 
$Values of Cardy (1977a, b) and Brower et a1 (1978). 
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However, in RFT there is an independent calculation by Cardy (1977a, b) that uses the 
high-order behaviour of perturbation theory, to obtain a value of A = 0.60~t0.01, and 
thus AV = 1.04*0.02. 

The Pad6 results were stable and ‘perturbations’ in the input values of p c  and y 
within their error limits had no significant effect. Judging from our best results ( k o ( p )  
and p ~ ( p )  in table l ) ,  we can state that 1 . 0 0 s  AI s 1.04 in DBP (d = 2). 

The case of the FCC lattice is unfortunately rather different. The error limits on pc  
and p for the FCC lattice are relatively large; we do not have a reliable value of p,for this 
lattice, since the S ( p )  series are short, and we are unaware of any Monte Carlo 
calculations. In our analysis of fz (equation ( 5 ) )  we found that the values of the 
confluent exponent are very sensitive to the input values of p c  and p, and from Blease’s 
values of p = 0.60h 0.04 and p c  = 0.199k 0.002, we obtained a confluent exponent in 
the range 0.6 s AI G 1.1. For the high-temperature series of RFT in D = 2 (d = 3) the 
situation is even worse, since the series are too short to extract any value for AV,  but 
Cardy (1977a, b), employing, as mentioned above, the large-order behaviour of 
perturbation theory, obtains a value of A = 0.49 f 0.01, and thus AV = 0.64 f 0.02. Our 
estimate indeed includes this RFT value, but if we concentrate on the central values of p c  
and p, we obtain confluent exponent results that are close to the upper limit of the above 
quoted range. Our analysis of f3 (equation (6) )  confirms this observation (although in 
this case the accuracy is low), and thus we cannot ignore the possibility that B is rather 
small and we have observed the A z  term in our analysis. This ambiguity is reminiscent 
of the situation arising with the Ising models. Here, the susceptibility expansion takes 
the form 

X ( t ) - ~ ( t ) t - Y + ~ t - Y + A 1 + .  . . 
=AI t -Y( l+Az t+BtA1+.  , .), 

and while initial results suggested that B = 0, A2 # 0 for the d = 3 spin-; model (Camp 
and Van Dyke 1975), it was later shown that B Z O  in accordance with the renor- 
malisation group predictions (McKenzie 1979). 

In summary, the analysis given above is consistent with universality between the 
confluent exponents of RFT and DBP. 

We are grateful for interesting discussions with J Cardy, E Domany, W Kinzel and L 
Schulman. One of us (JA) acknowledges the support of the Lady Davis Fellowship 
Foundation. 
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